Utilizing Multi– Modal Cues for detection of **Mental Depression**

Balancing academics and social life - tips?

Future career options?

Student loans!

I just broke up, what's left in life now!?

How do I better manage my time?

Am I working hard enough?

More Than a Thought

- Am I doing the right thing?
- Is it all worth it?
- What will my family think?
 - I don't have any friends!
- I just don't have time for anything!
- I feel homesick!
- I am soo fat, nobody even looks at me!
 - Peer pressure!
- I have no money left!

The problem addressed is detecting depression using **multimodal data**, voice, text and visual features. We aim to develop a model **to detect depression** based on the participant's voice, facial expression and text responses. The focus is on multimodal data and depression detection making it a significant contribution to the field of depression research.

- Enhances mental depression diagnosis accessibility.
- Serves as a self-diagnostic tool for depression.
- Expandable to other mental health conditions.
- Facilitates early detection and intervention.

POTENTIAL **IMPACT**

- Break
 - Reduces stigma associated with mental health issues.

POTENTIAL **APPLICATIONS**

- Improves mental health outcomes in under-served areas.
- Assists in depression diagnosis and
 - management.

Promotes mental well-being in society.

Literature review 1

Depression Detection Model Using Multimodal Deep Learning

Two types of features were extracted:

TEXT

- Script Tokenization and Cleaning (using NLTK's Word Tokenizer)
- BERT Model for Feature Extraction (This involved token embedding, segment embedding, and positional embedding to provide comprehensive word context, ultimately flattening these features into a single vector representation.)

DATASET USED: DAIC-WOZ DATASET

VOICE

- Use of LIBROSA Library (Librosa enables direct handling of .wav files and voice conversion functions.)
- MFCC Feature Extraction

Example of participant 300 audio preprocessing

<u>Depression detection model using multimodal deep l%20(1).pdf</u>

Model Fusion

 Tensor Fusion Network (connecting features from each modality (voice and text) into a fully connected layer)

Fusion method	Accuracy	r		
Add	0.6275			
Concat	0.6837			
Multiply	0.6878			
TFN	0.8012			
Depression Detection Using LSTM				
Model	Accuracy			
SVM	0.5873			
RF	0.5692			
LR	0.6931			
XGB	0.6024			
LSTM	0.8012			
 Depression Detection Using LSTM 				

LSTM, an advanced RNN model, is used due to its ability to consider long-term context, essential in classifying depression based on the entire interview context.

Depression Status Estimation by Deep Learning based Hybrid Multi-Modal Fusion Literature review 2 Model

Feature Extraction and Preprocessing:

Preprocessed and analyzed using Sentence-BERT for capturing semantic representations.

- Facial features extracted using VISUAL OpenFace, focusing on head pose, facial action units, and gaze.
- Robust noise filtering with **AUDIO** CycleGAN ANF, feature extraction via COVAREP.

Model Architecture

TEXT

- Employed a multivariate time-series analysis with attention mechanisms.
- Siamese network pre-training for individual modalities.
- Late fusion model combining audio, visual, and text features for final classification.

Human Aided Enhancement

• Semi-live feature allowing continual model learning from new patient data, enhancing adaptability and accuracy.

https://arxiv.org/pdf/2011.14966.pdf

Achieved high accuracy (96.3%) and AUC (0.9682), indicating robustness in real-world scenarios.

FULL MODEL ARCHITECTURE

DATASET

The DAIC-WOZ (Distress Analysis Interview Corpus - Wizard of Oz) Database is a multimodal dataset containing clinical interviews designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder. The dataset was chosen for its **multimodal nature**, including audio and video recordings, extensive questionnaire responses, trustworthiness and ease of accessibility, making it well-suited for research in the field of mental health.

- 189 sessions, each averaging 16 minutes
- Audio and video recordings
- Extensive questionnaire responses
- 189 folders of sessions 300-492
- Excluded sessions: 342, 394, 398, 460
- 402
- action units
- Transcripts of the interviews • COVAREP audio features, including F0, VUV, formants, and other audio characteristics

Concerns

All ethical concerns were taken care of, and prior permission to extract audio, video and textual data from the interviewees were taken.

Patient Health Questionnaire -8 (PHQ-8)

Not at all

Todav's Date

Several

davs

 \Box

More

than half

the days

 \Box

Nearly

every day

The dataset consists of the following features and data points:

- Included sessions with special notes: 373, 444, 451, 458, 480,
- 68 2D and 3D facial points, gaze, head orientation, and facial

Data Preprocessing

- Stopword removal from transcript data
- Background noise removal from audio files
- Undersampling for removing class imbalance
- Silent Noise Removal
- Convert text to lowercase

Feature Extraction

- For textual data, Word2Vec used for generating embeddings (vectorization) chosen primarily due to lighter computational expenses.
- Pre-trained models such as BERT and Longformer were tried but rejected owing to them computationally very heavy and expensive.
- Owning to unavailability of actual interview footage, pre-extracted features already provided with the dataset were used for dealing with image/video data. 1. CLNF features - 68 2D points on the face
- 2. CLNF AUs
- 3. CLNF features 3D 68 3D points on the face
- 4. CLNF gaze Gaze depiction using head and eye position 5. CLNF hog - HOG features
- 6. CLNF pose 6 number feature to keep track of movement using rotation matrices

Feature Extraction

- For audio data, performed after extensive research and literature review on similar projects as also the concept of audio preprocessing in general. 1. MFCCs (Mean): Mean values of Mel-frequency cepstral coefficients, capturing spectral characteristics.
- 2. MFCCs (Standard Deviation): Standard deviation of Mel-frequency cepstral coefficients, indicating variability in spectral features.
- 3. MFCCs (Maximum): Identifies the maximum value of Mel-frequency cepstral coefficients, highlighting spectral peaks.
- 4. MFCCs (Minimum): Reveals the minimum value of Mel-frequency cepstral coefficients, indicating spectral troughs.
- 5. Chroma: Represents the tonal content, highlighting pitch class distribution in the audio.
- 6. Spectral Contrast: Captures the difference in amplitude between peaks and galleys in the audio spectrum

Feature Extraction

- 1.Zero Crossing Rate: Measures the rate of signal crossings through zero, indicating noisiness or percussiveness.
- 2. Energy: Quantifies the energy in audio frames, showing variations in signal intensity.
- 3. BPM (Beats Per Minute): Identifies the tempo or rhythm of the audio in beats per minute.
- 4. Tempo: Represents the tempo information with a different computation method. 5. Onset Strength: Measures the strength of note onsets in the audio, indicating
- musical events.

	Random forest	:s:			
from sklearn.ensemble import RandomForestClassifier		precision	recall	f1–score	support
<pre>clf1 = RandomForestClassifier()</pre>					
param_grid = {	0_0	0_79	0_45	0, 58	33
'n_estimators': [100, 200, 300, 400, 500],		0175		0.00	
'max_features': ['sqrt', 'log2'],	1.0	0.36	0.71	0.48	14
'max_depth' : [4,5,6,7,8],					
<pre>'criterion' :['gini', 'entropy','log_loss']</pre>	accuracy			0.53	47
<pre>} @_rfc = GridSearchCV(estimator=clf1, param_grid=param_grid, cv=9)</pre>	macro avg	0.57	0.58	0.53	47
CV_rfc.fit(X_train_1,Y_train_1)	weighted avg	0.66	0.53	0.55	47
<pre>{'criterion': 'gini', 'max_depth': 5, 'max_features': 'log2', 'n_estimators': 200} 0.6049382716049383</pre>	Train: 1.0 Test: 0.53191	.48936170213			

Random Forest with Hyperparameter Tuning

from sklearn.svm import SVC	SVM:				
		precision	recall	f1-score	support
classifier = SVC()		p. 001010			ouppor c
param_grid = {					
'C': [0.1, 1, 10, 100, 1000],	0.0	0.60	0.18	0.28	33
'gamma': [1, 0.1, 0.01, 0.001, 0.0001],	1 0	0 27	0 71	0 20	11
'Kernel': ['rbf', 'poly', 'sigmoid'],	1.0	0.27	0./1	0.39	14
'class_weight': ['balanced', None],					
'verbose': [True]				0.04	47
}	accuracy			0.34	47
<pre>CV_rfc = GridSearchCV(estimator=classifier, param_grid=param_grid, cv=9)</pre>	macro avg	0.44	0.45	0.34	47
CV_rfc.fit(X_train_1,Y_train_1)	weighted ava	0 50	0 31	0 31	47
	werghted avg	0.50	0.54	0.JT	47
<pre>{'C': 0.1, 'class_weight': 'balanced', 'gamma': 1, 'kernel': 'rbf', 'verbose': True}</pre>	Trains 1 0				
0.555555555555556					
	Toot. 0 24042	055210140026			

SVM with Hyperparameter Tuning

J∎⊃4U4ZJJJJI9I4O9JU

XGBoost:				
	precision	recall	f1–score	support
0.0	0.71	0.45	0.56	33
1.0	0.31	0.57	0.40	14
accuracy			0.49	47
macro avg	0.51	0.51	0.48	47
weighted avg	0.59	0.49	0.51	47
Train: 1.0				
Test: 0.48936	17021276595	6		

XGB Classifier

CatBoost:				
	precision	recall	f1–score	support
0.0	0.75	0.36	0.49	33
1.0	0.32	0.71	0.44	14
accuracy			0.47	47
macro avg	0.54	0.54	0.47	47
weighted avg	0.62	0.47	0.48	47
Train: 1.0				
Tact 0 16000	51062020707	ว		
TESL: 0.40000	21002023101	5		

CatBoost Classifier

Random forest	s:				
	precision	recall	f1–score	support	
0.0	0.67	0.42	0.52	33	
1.0	0.27	0.50	0.35	14	
accuracy			0.45	47	
macro avg	0.47	0.46	0.43	47	
weighted avg	0.55	0.45	0.47	47	
Train: 1.0					
Test: 0.44680851063829785					

Random Forest Classifier

SVM:				
	precision	recall	f1-score	support
	~	0.00	0 44	~~
0.0	0.55	0.36	0.44	33
1.0	0.16	0.29	0.21	14
accuracy			0.34	47
macro avg	0.35	0.32	0.32	47
weighted avg	0.43	0.34	0.37	47
Train: 0.6666	666666666666	6		
Test: 0.34042	55319148936			

SVM Classifier

XGBoost:				
	precision	recall	f1–score	support
0.0	0.73	0.48	0.58	33
1.0	0.32	0.57	0.41	14
accuracv			0.51	47
macro avg	0.52	0.53	0.50	47
weighted avg	0.61	0.51	0.53	47
Train: 1.0				
Test: 0.51063	82978723404			

XGB Classifier

CatBoost:			
	precision	recall	f1-
0.0	0.61	0.33	
1.0	0.24	0.50	
accuracy			
macro avg	0.43	0.42	
weighted avg	0.50	0.38	
Train. 1 0			
Test: 0.38297	87234042553		

CatBoost Classifier

support -score 0.43 33 0.33 14 0.38 47 0.38 47 47 0.40

Random forest	s:				
	precision	recall	f1-score	support	
0	0.69	0.67	0.68	33	
1	0.27	0.29	0.28	14	
accuracy			0.55	47	
macro avg	0.48	0.48	0.48	47	
weighted avg	0.56	0.55	0.56	47	
Train: 1.0					
Test: 0.5531914893617021					

Random Forest Classifier

SVM:					
	precision	recall	f1-score	support	
0.0	0.70	1.00	0.82	33	
1.0	0.00	0.00	0.00	14	
accuracy			0.70	47	
macro avg	0.35	0.50	0.41	47	
weighted avg	0.49	0.70	0.58	47	
Train: 0.5961538461538461					
Test: 0.70212	76595744681				

SVM Classifier

XGBoost:					
	precision	recall	f1–score	support	
0	0.80	0.73	0.76	33	
1	0.47	0.57	0.52	14	
accuracy			0.68	47	
macro avg	0.64	0.65	0.64	47	
weighted avg	0.70	0.68	0.69	47	
Train: 1.0					
Test: 0.6808510638297872					

XGBoost Classifier

CatBoost:				
	precision	recall	f1–score	support
0	0.74	0.61	0.67	33
1	0.35	0.50	0.41	14
accuracy			0.57	47
macro avg	0.55	0.55	0.54	47
weighted avg	0.62	0.57	0.59	47
Train: 1.0	8085106383			

CatBoost Classifier

Individual Best Weights

- We find the best combination of weights for three sets of predictions of the same classifier.
- For each combination of weights, we calculate a weighted average of the three prediction sets
- Then, we convert the weighted average into binary predictions using a threshold of 0.5 and calculate the F1 score

```
# find the best weights
best_weights = [0, 0, 0]
best_score = 0
for i in range(0, 100):
    for j in range(0, 100):
        for k in range(0, 100):
            if(i + j + k == 0):
                continue
            weights = [i/100, j/100, k/100]
            final_preds = (weights[0] * Y_pred_xgb_1 + weights[1] * Y_pred_xgb_2 + weights[2] * Y_pred_xgb_3) / sum(weights)
            final_binary_preds = np.where(final_preds > 0.5, 1, 0)
            # score = f1_score(final_binary_preds, Y_test_3)
            score = f1_score(Y_test_3, final_binary_preds)
            if(score > best_score):
                best_score = score
                best_weights = weights
```


Final Random Forest Classifier

[0.05, 0.04, 0.01]

Final Random	Forest: precision	recall
0 1	0.83 0.38	0.45 0.79
accuracy macro avg weighted avg	0.61 0.70	0.62 0.55

	support	f1-score
	33 14	0.59 0.51
	47	0.55
>	47 47	0.55 0.57

Final SVM Classifier

[0.01, 0.0, 0.0]

Final SVM:		
	precision	recall
0	0.60	0.18
1	0.27	0.71
accuracy		
macro avg	0.44	0.45
weighted avg	0.50	0.34

1-score	support	
0.28	33	
0.39	14	
0.34	47	
0.34	47	
0.31	47) >>>	

Final XGBoost Classifier

Final XGBoost	:	
	precision	recall
0	0.83	0.88
1	0.67	0.57
accuracy		
macro avg	0.75	0.73
weighted avg	0.78	0.79

02]

	support	1-score
	33 14	0.85 0.62
	47 47	0.79 0.73
$\left(\right)$	47	0.78

Final CatBoost Classifier

Final Cat	tBoos	t:	
		precision	recall
	0	0.75	0.36
	1	0.32	0.71
accu	racy		
macro	avg	0.54	0.54
weighted	avg	0.62	0.47

0]

1-score	support	
0.49 0.44	33 14	
0.47 0.47	47 47	
0.48	47	

Final Best Weight

- We find the best combination of weights for three sets of predictions: Y_pred_rf_1, Y_pred_xgb_2, and Y_pred_xgb_3 (RF, XGB, XGB)
- Apply the same principle as before

```
# find the best weights
best_weights = [0, 0, 0]
best_score = 0
for i in range(0, 100):
    for j in range(0, 100):
        for k in range(0, 100):
            if(i + j + k == 0):
                continue
            weights = [i/100, j/100, k/100]
            final_preds = (weights[0] * Y_pred_rf_1 + weights[1] * Y_pred_xgb_2 + weights[2] * Y_pred_xgb_3) / sum(weights)
            final_binary_preds = np.where(final_preds > 0.5, 1, 0)
            score = f1_score(Y_test_3, final_binary_preds)
            if(score > best_score):
                best_score = score
                best_weights = weights
```

[0.01, 0.01, 0.02]

Final Model

• Random Forest for Text Classification and XG Boost for Audio and Video Classification is used as the final model.

Final Model:					
	precision	recall	f1-score	support	
0	0.82	0.85	0.84	33	
1	0.62	0.57	0.59	14	
accuracy			0.77	47	
macro avg	0.72	0.71	0.71	47	
weighted avg	0.76	0.77	0.76	47	

LSTM without Gating (SL)

Model Definition

Input Branches:

- 250 time steps
- Audio: 74 features, processed by 1 dense layer.
- Text: 5100 features, processed by 3 dense layers (1000, 500, 250).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.
- Model Compilation and Optimization

 Adam Optimizer: Learning rate = 0.0001 Loss Function: Binary Cross-Entropy

LSTM without Gating (SL)

Model Definition

Input Branches:

- 250 time steps
- Video: 388 features, processed by 1 dense layer. Text: 5100 features, processed by 2 dense layers (1000 and 500).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

- Adam Optimizer: Learning rate = 0.0001
- Loss Function: Binary Cross-Entropy

LSTM without Gating (SL)

Model Definition

Input Branches:

- 250 time steps
- Audio: 74 features, processed by 1 dense layer. Video: 388 features, processed by 2 dense layers (200 and 74).
- Text: 5100 features, processed by 4 dense layers (1000, 500, 250, and 74).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

Model Compilation and Optimization

 Adam Optimizer: Learning rate = 0.0001 Loss Function: Binary Cross-Entropy

LSTM with Gating

- "Gating" in LSTM (Long Short-Term Memory) networks is crucial for controlling the flow of information through the network.
- It helps the network to decide how much of the past information needs to be passed along to the future.

Word-level Gating

Processes and applies gating mechanisms at the level of individual words in a text.

Sentence-level Gating

Treats entire sentences as units for processing and applies gating mechanisms at this higher level.

LSTM with Gating (SL)

• <u>Highway Layer (Custom Layer)</u>

- Transform gate
- Activation Gate
- Carry Gate: Computed as 1.0-Transform Gate

Model Definition

- Input Branches:
 - 250 time steps
 - Video: 388 features, processed through 3 consecutive Highway layers.
 - Text: 5100 features, processed by 2 dense layers (1000 and 500 units).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

- Adam Optimizer: Learning rate = 0.0001
- Loss Function: Binary Cross-Entropy

LSTM with Gating (SL)

• <u>Highway Layer (Custom Layer)</u>

- Transform gate
- Activation Gate
- Carry Gate: Computed as 1.0-Transform Gate

Model Definition

- Input Branches:
 - 250 time steps
 - Audio: 74 features, processed through 3 consecutive Highway layers.
 - Text: 5100 features, processed by 2 dense layers (1000 and 500 units).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

- Adam Optimizer: Learning rate = 0.0001
- Loss Function: Binary Cross-Entropy

LSTM with Gating (SL)

• Highway Layer (Custom Layer)

- Transform gate
- Activation Gate
- Carry Gate: Computed as 1.0-Transform Gate

Model Definition

- Input Branches:
 - 250 time steps
 - Audio: 74 features, processed through 3 consecutive Highway layers.
 - Video: 388 features, processed through 3 consecutive Highway layers.
 - Text: 5100 features, processed by 4 dense layers (1000, 500, 250, and 74).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

- Adam Optimizer: Learning rate = 0.0001
- Loss Function: Binary Cross-Entropy

Model Training

- Validation Split: 0.2
- EarlyStopping Callback
 - Monitors validation loss for improvement.
 - Minimum change in loss (min_delta): 0
 - Patience: 15 epochs (stops if validation loss does not improve for 15 consecutive epochs).
 - Restores best weights when training stops.
- Epochs: 50
- Batch Size: 32

LSTM with Gating (WL)

• Highway Layer (Custom Layer)

- Transform gate
- Activation Gate
- Carry Gate: Computed as 1.0-Transform Gate

Model Definition

- Input Branches:
 - 1700 time steps
 - Audio: 74 features, processed through 3 consecutive Highway layers.
 - Video: 388 features, processed through 3 consecutive Highway layers.
 - Text: 5100 features, processed by 4 dense layers (1000, 500, 250, and 74).
- LSTM Layer: 128 units with 20% dropout.
- Output Layer: 1 unit with sigmoid activation for binary classification.

- Adam Optimizer: Learning rate = 0.0001
- Loss Function: Binary Cross-Entropy

Model Training

- Validation Split: 0.2
- EarlyStopping Callback
 - Monitors validation loss for improvement.
 - Minimum change in loss (min_delta): 0
 - Patience: 15 epochs (stops if validation loss does not improve for 15 consecutive epochs).
 - Restores best weights when training stops.
- Epochs: 50
- Batch Size: 2

PERFORMANCE METRICS

Model	Modality	Precision	Recall	F1-Score	Accuracy
LSTM without	Text + Audio	0.69	0.34	0.46	0.42
Gating	Text + Video	0.61	0.43	0.51	0.48
	Text + Audio + Video	0.58	0.52	0.55	0.54
LSTM with sentence-	Text + Audio	0.64	0.63	0.63	0.59
level Gating	Text + Video	0.63	0.57	0.6	0.57
	Text + Audio + Video	0.68	0.67	0.68	0.66
LSTM with word-	Text + Audio + Video	0.51	0.64	0.57	0.54
level Gating					

Challenges

- Scalability
- Data Scarcity
- Cultural Bias
- Data Privacy and Security
- Ethical Concerns
- User Acceptance and Stigma
- Diversity and Inclusivity

Deployment at a Plaksha

Integration with Counseling Services

Research and Development Collaboration

Training and Awareness Programs

Student Health Monitoring

THANK YOU!

